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Abstract—Accurate crowd flow forecasting is crucial for effec-
tive crowd management and public safety in built environments.
However, existing studies often overlook the importance of
spatial connectivity in predicting crowd movements. This paper
addresses this critical gap by incorporating spatial priors into
crowd flow predictive modeling. We introduce a framework
called the Spatio-Temporal Encoder Network (STEN), designed
to simultaneously encode spatial information and temporal crowd
data. Our study utilizes a newly collected dataset comprising
two scenarios on a university campus, both containing spatial
connectivity information. We evaluate the STEN framework’s
forecasting performance, comparing it with models that rely
solely on temporal crowd flow data. Results demonstrate that
models whose inputs include both spatial and temporal infor-
mation consistently yield more accurate prediction outcomes
compared to models whose inputs are only temporal crowd
flow data. This finding underscores the importance of including
spatial priors in enhancing the accuracy and reliability of
crowd flow predictive modeling. We envision that our study
will highlight the importance of spatial connectivity for future
crowd management practices, and that our STEN framework
and the accompanying dataset will serve as a valuable resource
for researchers developing and evaluating crowd flow prediction
models and contribute to identifying potentially congested regions
and providing early warnings in our built environments.

Index Terms—pedestrian crowd data, built environment, pre-
dictive modeling, graph neural network, recurrent neural net-
work

I. INTRODUCTION

The ability to accurately forecast crowd flow in different
regions of a built environment is crucial for effective crowd
management, event planning, and public safety. Anticipat-
ing future crowd states enables proactive decision-making
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and resource allocation, potentially preventing overcrowding,
congestion, and associated risks. For example, identifying
potential congestion hotspots can transform them into valuable
places by enabling informed responsive planning and efficient
space utilization. However, despite the importance of crowd
flow forecasting, research on this problem has been limited by
the lack of existing studies that provide both crowd flow data
and the spatial connectivity information of the environment.
Existing crowd datasets often focus on crowd counting or
trajectory prediction, lacking the necessary spatial connectivity
information about key places in our built environment.

To illustrate the critical role of spatial connectivity, consider
a simplified scenario in a crowded venue with two camera-
monitored hallways through which pedestrians are exiting.
The spatial relationship between these hallways significantly
impacts crowd flow predictions: If the hallways are arranged
in parallel, leading directly from the main area to separate
exits, a high flow in one hallway would likely correspond to a
lower flow in the other, as the total exiting crowd is distributed
between them. Conversely, if the hallways are in series, with
one leading to the other, we would expect the crowd flow
to be roughly equal in both hallways, as the same group of
people passes through both in sequence. This simple moti-
vating example underscores how crucial spatial connectivity
information is for accurate crowd flow forecasting. Yet, most
existing studies do not include such vital data, limiting their
predictive power and applicability in real-world scenarios.

While data-driven methods are frequently employed to study
pedestrian and crowd behaviors, such data-driven approaches
often overlooking the crucial role of spatial connectivity in
shaping crowd movements. These studies, while useful for cer-
tain aspects of crowd analysis such as pedestrian counting and
tracking, do not offer insights on how the built environment
could affect crowd movement.

For instance, established pedestrian datasets such as the
ETH dataset [1], UCY dataset [2], and the Stanford Drone



Dataset [3], provide valuable pedestrian tracking information
but has no information about the surrounding space.

Similarly, datasets designed for crowd counting, such as the
WorldExpo’10 dataset [4], which contains 108 surveillance
videos from the Shanghai 2010 WorldExpo, the ShanghaiTech
dataset [5], and the UCF-QNRF dataset [6], all featuring
extremely dense crowd images. However, these datasets are
primarily designed for crowd counting and do not provide the
spatial connectivity information necessary for modeling crowd
flow between different regions.

Even datasets that offer multiple camera views, such as the
CrowdFlow dataset [7] and the CUHK Crowd Dataset [8],
primarily target crowd behavior analysis and anomaly detec-
tion. These datasets, while providing richer visual information,
still fall short in explicitly representing the spatial layout and
connectivity of the environment.

This prevalent lack of spatial information in existing crowd
studies creates a significant gap in our understanding of crowd
dynamics. Crowd movements are not isolated phenomena;
they are intricately linked to the spatial configuration of the
environment. Factors such as the layout of pathways, the
presence of obstacles, and the connectivity between different
areas play a crucial role in determining crowd flow patterns.

These constraints call for studies that provide not only
varying-density crowd scenarios but also the spatial connectiv-
ity essential for a comprehensive understanding and modeling
of pedestrian flow between different regions of a built envi-
ronment. Our study aims to address this gap by incorporating
spatial priors into the predictive modeling of crowd flow.
Previous research has demonstrated the value of incorporating
spatial interactions into predictive models, such as using Long
Short-Term Memory (LSTM) networks to simulate pedestrian
movements [9] and graph-based methods like Social-STGCNN
[10] to capture inter-pedestrian interactions; however, these
studies often overlook the spatial connectivity of physical
spaces such as doors, stairs, and tunnels.

In this paper, we first briefly introduce the mathematical
notations that define the crowd flow forecasting problem,
building upon our previous works [11], [12]. Subsequently, we
propose a framework named Spatio-Temporal Encoder Net-
work (STEN) for the predictive modeling of crowd flow. STEN
is designed to simultaneously encode spatial information and
temporal crowd data, thereby capturing the complex interplay
between spatial layout and crowd dynamics. Lastly, we present
experimental results conducted on a newly collected dataset
comprising two scenarios on a university campus. Crucially,
both scenarios include detailed spatial connectivity informa-
tion. We evaluate forecasting performance for up to 4 minutes
ahead, and demonstrate that models whose inputs are both
spatial and temporal information consistently yield more ac-
curate prediction outcomes compared to models whose inputs
are only temporal crowd flow data. This result underscores
the importance of including spatial priors in enhancing the
accuracy and reliability of crowd flow predictive modeling.

II. PROBLEM STATEMENT

The research problem presented in this section is to forecast
pedestrian crowd flow within a complex built environment
with multiple Pedestrian Activity Regions (PARs), or locations
with potentially high pedestrian activity, such as exits and
entrances, and frequent visited services. Specifically, we define
this problem as follows: given (1) historical crowd flow data,
and (2) spatial prior about the connectivity of pedestrian
locations in the built environment, our objective is to predict
future crowd flow data at each PAR. In this section, we
first elaborate on how a crowd flow state is represented
mathematically. Subsequently, we present the formal problem
formulation for crowd flow forecasting.

A. Crowd Flow State Representation

Crowd movement inherently manifests in both space and
time. The flow of people within each Pedestrian Activity
Region (PAR) fluctuates over time, with individuals transi-
tioning in and out of PARs and traversing between adjacent
ones spatially. Previous work in [12] presented an integrated
data representation, Crowd Mobility Graphs (CMGraphs), to
simultaneously represent (1) temporal crowd flow data, and
(2) spatial prior about the connectivity of multiple PARs in a
built environment.

A single CMGraph represents a snapshot of the crowd
mobility state at time step t. A CMGraph can be written as an
undirected, unweighted, and dynamic graph Gt = (V,E,Xt),
where t is a discretized time step, V is the set of vertices (i.e.
nodes), E ⊆ V ×V is set of edges that represent connectivity
between the PARs, and Xt is the nodal feature matrix. Note
that V and E are time-invariant, as we assume the built
environment remains unchanged throughout the forecasting
period. In other words, it is assumed that neither the PARs
nor the routes between them are tentatively added or blocked.

Over a time horizon, a sequence of CMGraphs, one at each
time step, is used to represent the crowd flow over time.
Each CMGraph also captures spatial information of the PAR
connectivity with the graph topology. The following spatio-
temporal crowd mobility variables are used to construct the
CMGraphs:

1) Time step, observed and prediction time horizons: A
time step is a discretization of time in the crowd flow
forecasting problem, which is a time series problem that
involves forecasting future crowd flow information based
on past observations — given the crowd flow information
during the observed discrete time horizon 1 to Tobs, the
aim is to predict the crowd flow information from time
Tobs+1 to Tpred.

2) Pedestrian Activity Region (PAR): A PAR is repre-
sented as a node indexed by vi, where i ∈ {1, . . . , N}
with N representing the total number of PARs. The node
set V = {v1, v2, . . . , vN} is therefore also the set of all
PARs.

3) Spatial connectivity prior: Spatial connectivity defines
the topological linkage between PARs. Two PARs are



considered connected if pedestrians can move directly
between them without the need to enter a third region.
Spatial connectivity is treated as a prior information, as
it is not directly captured by sensors such as surveillance
cameras, but is rather manually annotated from provided
floor plan information. We represent this connectivity
between PARs as time-invariant edges of the CMGraphs,
denoted as E, where an edge ejk ∈ {0, 1} connecting
node vj and node vk is 1 if two egress regions are adja-
cent to each other and 0 otherwise. The set of edges can
be represented as the adjacency matrix A ∈ {0, 1}N×N .

4) Temporal crowd flow information: Crowd flow infor-
mation at time step t is represented as a feature matrix
Xt ∈ RN×D, where N is the number of PAR and D is
the number of crowd flow features associated with each
individual PAR. In this study, two crowd flow features
(i.e. D = 2) are used for experiments — pedestrian count
over time (in people per second, or pp/s) and timestamp
(in seconds).

B. The Crowd Flow Forecasting Problem

Following the above definition of a crowd flow state, the
crowd flow forecasting problem is formulated as a sequence
generation task that aims to learn a mapping from crowd flow
state in the observed time horizon to that in the predicted time
horizon.

Ŷ = [ŷt(v)]Tobs<t≤Tpred,v∈V = f(G1, G2, . . . , GTobs) (1)

where f is the function that maps inputs to the output, the
inputs are the time series of observed CMGraph-represented,
spatio-temporal crowd flow state G1, G2, . . . , GTobs , and the
output is the time series of crowd flow forecasts, Ŷ ∈
RN×(Tpred−Tobs).

III. METHOD: SPATIO-TEMPORAL ENCODER NETWORK
(STEN) FRAMEWORK

This section proposes the Spatio-Temporal Encoder Net-
work (STEN), a crowd flow forecasting system that iteratively
learns and integrates the spatial and temporal features in order
to generate prediction outputs. A schematic of the overall
system framework is illustrated in Figure 1.

In our earlier section, we described the objective of the
forecasting task, which is to learn the function f that maps
historical observations to predicted future crowd flow data,
as shown in equation 1. The challenge lies in enabling f
to capture both spatial and temporal information in the CM-
Graphs using the dynamic CMGraphs as inputs (Fig. 1a). To
achieve this, we introduce the concept of embeddings, which
are high dimensional vector representations of data features,
and are learned by models so that relationships within the
data are represented. In our context, spatial embedding (Fig.
1b) is learned in order to capture the topological structure
or spatial relationships within the CMGraphs. It transforms
the information about how different regions or nodes in
the graph are connected or related into a high-dimensional

vector. Temporal embedding, on the other hand, is concerned
with capturing the temporal dynamics or changes of crowd
flow features over different time steps. In our approach, the
generation of temporal embeddings, derived from sequential
spatial embeddings as inputs, effectively results in a spatio-
temporal embedding (Fig. 1c) that combines both spatial and
temporal information. To learn these spatio-temporal embed-
dings and to combine these representations for generating the
final prediction output (Fig. 1d), we propose a deep learning
framework, spatio-temporal Encoder Network (STEN). STEN
consists of two encoder modules for embedding generation:

1) Spatial encoder
2) Temporal encoder

While STEN provides a general framework for crowd flow
forecasting, specific models need to be selected for the spatial
and temporal encoder modules. The spatial encoder module is
a network that generates an embedded graph. Among the many
graph neural networks that can achieve this, we experiment
with the simple graph convolutional network (GCN) [13] in the
scope of this study. Additionally, to remove over-smoothing
effect of deep GCN when generating spatial embeddings, we
experiment with the addition of dense connections [14].

Similar to the spatial encoder module, the temporal encoder
module can consist of any model architecture that can generate
an embedding from sequential data input. Examples include
multi-layer perceptron (MLP) [15], transformer [16], and re-
current neural network. Experiments in this study is conducted
with the temporal encoder module being a the gated recurrent
unit (GRU), which is a type of recurrent neural network.

The final step of STEN is a linear layer, where a learnable
weight matrix is used to transform the length of the spatio-
temporal embedding vector to the length of the desired output,
Tpred − Tobs.

A. Spatial Encoder: Dense Graph Convolution Network
(Dense-GCN)

Dense graph convolutional network (dense-GCN) is em-
ployed as the spatial encoder module for STEN. In the
following, the motivation and computation methods of GCN
and dense connections are introduced.

Due to its simplicity, we first experiment with graph con-
volutional network (GCN), one of the first GNNs developed
and popularly used for several graph learning applications
[13]. GCN is chosen for its simplicity and effectiveness in
learning node embedding from neighborhoodal information in
graphs. For a set of N nodes in a CMGraph Gt = (V,E,Xt),
a GCN layer updates the nodal information using a target
node’s neighboring nodal information for all nodes. More
formally, given a target node vi, whose node embedding vector
is xt(vi) (the ith row of the feature matrix Xt), and its set of
neighboring nodes J , a GCN layer updates the target node
embedding as follows:

x(vi)(k) =
W(k)

|J |
∑
vj∈J

x(vj)(k−1) (2)



Fig. 1. Illustration of the STEN System. (a) CMGraphs are used as inputs to the system. (b) A spatial embedding of each graph is generated by the spatial
encoder module. (c) For each node, a spatio-temporal nodal embedding is generated by the temporal encoder module. (d) A fully connected (FC) layer is
used to transform the dimension of the final prediction output, the crowd flow forecasts.

where W(k) and x(vi)(k) are a learnable parameter and the
ith node’s updated embedding of the kth layer, respectively.
In the first layer, x(vi)(0) is the initial feature vector of node
vi, for all vi ∈ V .

Stacking K GCN layers allow us to update node embed-
dings using information aggregated from nodes in the K-hop
neighborhood. After K GCN layers, the embedded graph, G′

t

is learned, whose node embedding matrix is X′
t, each row

being x′
i, the updated embedding vectors of node i. Each

node embedding vector is of an embedding dimension DGCN ,
a tunable hyperparameter. The dimension of X′

t is therefore
N ×DGCN .

Having deep layers of GCN stacked in a model, however,
exhibit the issue of over-smoothing, as observed by Li et
al. [17]. Dense connections have been shown to be effective
in reducing this effect in deep GCNs [14]. The concept of
dense connections, first introduced in the convolutional neural
network (CNN) model DenseNet [18], involves concatenates
an output from earlier layers with an output from later layers.
Thus, in this study, we have incorporated the concept of
dense connections from CNNs into GCNs by concatenating
the GCN-learned spatial embedding, X′

t, with the original
input, Xt. The resulting output of this architecture, referred
to as Dense-GCN, is denoted as Ht ∈ RN×(DGCN+D). The
schematic of the dense-GCN computation is shown in Figure
2.

B. Temporal Encoder: Recurrent Neural Network

GRU can be used to encode hidden state representations of
time series inputs. Mathematically, each GRU operation in a

Fig. 2. Spatial Encoder Module: Dense-GCN.

layer l can be expressed as follows:

r
(l)
t = σ(W(l)

ara
(l)
t + b(l)ar + W(l)

hrh
(l)
t−1 + b

(l)
hr) (3)

z
(l)
t = σ(W(l)

aza
(l)
t + b(l)az + W(l)

hzh
(l)
t−1 + b

(l)
hz) (4)

n
(l)
t = tanh(W(l)

ana
(l)
t + b(l)an + r

(l)
t ∗ (W(l)

hnh
(l)
t−1 + b

(l)
hn)) (5)

h
(l)
t = (1− z

(l)
t ) ∗ n(l)

t + z
(l)
t ∗ h(l)

t−1 (6)

where W(l)
ar , W(l)

hr , W(l)
az , W(l)

hz , W(l)
an, W(l)

hn, b(l)ar , b(l)hr , b(l)az , b(l)hz ,
b
(l)
an, b

(l)
hn are learnable parameters of the lth layer. a

(l)
t is

the input to the layer and is equal to the node-wise spatial
embedding from the spatial encoder module, Ht, at layer
l = 0. h(l)

t is the hidden state of the lth layer at time t. h(l)
t−1 is

the hidden state of the layer at time t− 1 or the initial hidden
state at time 0. σ is the sigmoid function. r(l)t , z

(l)
t , n

(l)
t are the

reset, update, and new gates of the lth layer, respectively. ∗
denotes element-wise multiplication. The final output at time
t = Tobs after L GRU layers is then h

(L)
Tobs

, a vector with length
DGRU , a tunable hyperparameter.



As the temporal encoder performs node-wise operations, for
simplicity, we slightly abuse notation and use h

(L)
Tobs

to represent
h
(L)
i (Tobs), which signifies the spatio-temporal embedding for

the ith node (i.e., ith PAR). Here, we omit the node-specific
subscript i, which previously denoted values corresponding
to the ith node. Additionally, it is important to note that in
the final step of the proposed STEN system, the vector h

(L)
Tobs

undergoes a transformation to the desired prediction output
size via a fully connected (FC) layer.

IV. EXPERIMENTS

This section present the test set results from two experi-
ments aiming to evaluate the performance of the forecasting
models. The first experiment compares the models in across
the three different scenarios with a controlled forecasting
horizon of 20 steps to provide insight on the overall model
performance. The second experiment extends the forecasting
horizon in the first experiment to evaluate how the models
cope with short-term versus long-term predictions.1

A. Data Collection and Preprocessing

To accurately quantify the pedestrian activity within mul-
tiple PARs, a challenge arises when these areas are not fully
visible through a single camera lens, either due to considerable
distances between them or obstructions like walls that impede
direct line of sight.To overcome this limitation, we employed
an array of cameras for the comprehensive collection of a new
dataset: Campus Crowd. Our dataset collection method ensures
that the dynamics of crowd movement across dispersed PARs
are captured effectively. The mapping of cameras and the ID
of the PARs each camera captures is tabulated in Table I.

Adhering to the guidelines set by the Institutional Review
Board (IRB), direct access to these video recordings is re-
stricted to safeguard the privacy and personal identifiable
information of the individuals in the recordings. Nonetheless,
to facilitate research and application development while re-
specting privacy concerns, we have compiled and released
the aggregated crowd counts within each PAR, derived from
frame-by-frame crowd count extraction using YOLO-v7tiny,
using methods detailed in [11]. To enhance computational
efficiency, this analysis was conducted on a reduced frame rate,
with the dataset parameters outlined in Table I. Furthermore,
to encompass information on how crowds flow over the PARs,
the data is released in the form of CMGraphs, whose topology
naturally represent the spatial connectivity. The CMGraphs
are PyTorch Geometric graph objects [19], which is com-
monly used in graph-learning research. Our dataset provides
a valuable tool for studying crowd dynamics, ensuring both
the utility of the data for research purposes and adherence to
privacy regulations.

All above-mentioned parameters that describe the cameras,
PARs, and video properties of the two scenarios are presented
in Table I.

1Our publically accessible code of the Campus Crowd dataset and
the experimental implementations are available at https://github.com/vivian-
wong/Campus-Crowd

1) Scenario 1: Stadium: Raw videos for this scenario were
recorded at the end of the 2023 university-wide commence-
ment ceremony at a football stadium. The videos capture dense
crowds exiting the stadium through 6 tunnels that were open
for entry and exit during the commencement. All tunnels are
covered by the recordings, with one camera placed at each
tunnel. The cameras used include 5 phone cameras from the
iPhone series (one iPhone 7, one iPhone 13, one iPhone 13
Pro Max, and two iPhone 14 Pro Max) and one GoPro Hero
10. To simulate the elevation of regular surveillance cameras,
each camera was securely mounted on railings, which are
high vantage points near the tunnels. Sample video snapshots,
camera placement illustrations, and the PAR definitions are
shown in Figure 3.

2) Scenario 2: SEQ: Raw videos for this scenario were
recorded following a large class dismissal near a university
campus’ Science and Engineering Quad (SEQ) on the first day
of instruction of a semester. Class attendance is estimated to be
at its peak during this time, with around 250 students present.
Upon class dismissal, students flow into the engineering quad
and exit in 10 different directions. Three cameras (one iPhone
13, one iPhone 13 Pro Max, and one GoPro Hero 10) were
mounted at high vantage points to capture activity on the quad.
Sample video snapshots, camera placement illustrations, and
the PAR definitions are shown in Figure 4.

B. Evaluation Metrics

STEN-based models are evaluated on the test set of the
crowd flow dataset. The mean squared error (MSE) between
the node feature matrix of the predicted graph sequence and of
the true sequence is used as an evaluation metric of prediction
accuracy. The MSE loss measures the difference between
the PAR-wise predicted crowd flow and the true crowd flow,
averaged over the total number of PARs and the total number
of time steps, and is therefore

MSE =
1

NT

∑
v∈V

T∑
t=1

(yt(v)− ŷt(v))
2 (7)

where N is the number of nodes/PARs, T denotes the length
of the forecasted horizon Tpred − Tobs, yt(v) is the true crowd
flow and ŷt(v) is the predicted crowd flow at the ith node (i.e.
PAR) at time t.

The mean absolute error (MAE) is also reported as an evalu-
ation metric, as MSE places more penalization on larger errors
with the squared error term, making MSE more susceptible to
outliers. MAE measures the average of magnitude difference
between the prediction and the true node feature matrices:

MAE =
1

NT

∑
v∈V

T∑
t=1

|yt(v)− ŷt(v)| (8)

C. Implementation Details

The Dense-GCN-GRU model uses a 3-layer (K = 3) GCN
to learn the spatial representations, and a 2-layer (L = 2)
GRU to learn the temporal representations. The number of
node features is D = 2 and are (1) the aggregated crowd



TABLE I
CAMPUS CROWD DATASET DESCRIPTION. FOR PAR IDS, EACH PARENTHESIS INDICATES SURVEILLANCE COVERAGE BY ONE CAMERA. PEDESTRIAN

COUNT ARE BASED ON THE ANNOTATION OBTAINED FROM DETECTION AND TRACKING ALGORITHMS.

Parameters Stadium SEQ
Cameras 6 3
PAR ID (1), (2), (3), (4), (5), (6) (1,2,3,4), (5,6,7,8,9), (10)
Frame rate of raw recording (fps) 30 23
Processing frame rate (fps) 1 1
Resolution 2K 2K
Recording length (min:sec) 39:58 8:44
Max pedestrian count per camera frame 92 21

Note: fps = frames per second.

Fig. 3. (a) Sample snapshots and camera placements of Stadium. (b) Edge connectivity of the CMGraphs constructed from the PARs defined.

count, and (2) timestamp for each egress region. The embed-
ding dimension of the GCN encoder is DGCN = 128. The
embedding dimension of the GRU part is DGRU = 64. The
graph data is batched into minibatches of size 32 for training.
The Adam optimizer with a learning rate of 0.001 is used to
train the GCN-GRU model as well as each baseline model for
at most 40 epochs. The loss function used is MSE loss, as
detailed in Equation 7.

To assess the performance over varying lengths of the
forecasting horizon (i.e. short vs. long term forecasting
performance), we experiment on Tobs = Tpred − Tobs =
20, 60, 120, 240 in the study. In other words, the input and
the output sequences are equal in lengths. Since annotations
of SEQ and Stadium are 1 FPS, the shortest and longest
forecasting horizons assessed are 20 seconds and 4 minutes,

respectively.
All training and inference were conducted on the same

computer, equipped with an Intel Core i7-7820X processor
and a NVIDIA GeForce GTX 1080 Ti GPU.

D. Specific STEN Model and Baseline

For brevity, we refer to the STEN-based model that em-
ploys Dense-GCN as the spatial encoder and GRU as the
temporal encoder as Dense-GCN-GRU. To assess whether
incorporating spatial information with the CMGraphs can
indeed enhance forecasting accuracy, we compare the Dense-
GCN-GRU model with a baseline model with just GRU. The
GRU model treats inputs as purely temporal signals and do
not involve the graph’s adjacency matrix in its computation,



Fig. 4. (a) Sample snapshots and camera placements of SEQ. (b) Edge connectivity of the CMGraphs constructed from the PARs defined.

thereby leaving out the spatial connectivity information given
by the floor plan of the surrounding space.

On the other hand, we verify whether the addition of dense
connection in the spatial encoder reduces the over-smoothing
effect of deep GCNs. To assess the performance of adding
the dense connection, we conduct comparison experiments
with another baseline method, the GCN-GRU model, which
omits the dense connection, and therefore directly uses the
un-concatenated spatial embedding X′

t as the input to GRU
(rather than the Ht, the embedding after concatenation, in the
Dense-GCN-GRU model).

When choosing a model to deploy into real world ap-
plication, the computing resources required should also be
taken into account. Parameter sizes of each model under the
forecasting horizon of 20 is listed in Table II.

All models are trained with the same hardware setup and
hyperparameters.

TABLE II
NUMBER OF PARAMETERS FOR EACH MODEL.

Model Number of Parameters
Dense-GCN-GRU 97,300
GCN-GRU 96,916
GRU 39,316

E. Comparison of Forecasting Performance by Scenarios

1) Short Term Forecasts: The analysis of model perfor-
mances across various test sets on the short-term forecasting
horizon of 20 time steps is plotted in Figure 5, with numeric
values are provided in Table III. On both scenarios, Dense-
GCN-GRU consistently outperformed the other models, as
evidenced by its lower Mean Squared Error (MSE) and Mean
Absolute Error (MAE).

GRU, while less accurate than Dense-GCN-GRU, still main-
tained a moderate level of performance. However, GCN-



TABLE III
MSE AND MAE OF CROWD FLOW FORECASTING MODELS AT A

FORECASTING HORIZON OF 20 ACROSS DIFFERENT DATASETS. THE
LOWEST MSE AND MAE VALUES FOR EACH DATASET ARE BOLDED.

Model Scenario MSE MAE
Dense-GCN-GRU SEQ 0.247 0.333
GCN-GRU SEQ 0.764 0.627
GRU SEQ 0.299 0.354
Dense-GCN-GRU Stadium 0.034 0.130
GCN-GRU Stadium 0.076 0.197
GRU Stadium 0.041 0.142

TABLE IV
MODEL PERFORMANCE COMPARISON AT A FORECASTING HORIZON OF
240 ACROSS DIFFERENT SCENARIOS. MSE AND MAE OF CROWD FLOW

FORECASTING MODELS AT A FORECASTING HORIZON OF 20 ACROSS
DIFFERENT DATASETS. THE LOWEST MSE AND MAE VALUES FOR EACH

DATASET ARE BOLDED.

Model Scenario MSE MAE
Dense-GCN-GRU SEQ 0.336 0.410
GCN-GRU SEQ 0.782 0.645
GRU SEQ 0.965 0.772
Dense-GCN-GRU Stadium 0.036 0.140
GCN-GRU Stadium 0.048 0.160
GRU Stadium 0.078 0.201

GRU demonstrated relatively higher error rates, suggesting
limitations in its predictive capabilities compared to the other
models. One potential explanation for this observation is that
the GCN model over-smoothed target node signals, whereas
the GRU model does not aggregate neighboring node signals.
On the other hand, the Dense-GCN-GRU model preserves the
original target node signal through the use of dense connec-
tions, resulting in the highest forecasting accuracy amongst the
compared models. With the SEQ setting, which has the fewest
number of datasets, the over-smoothing effect of GCN-GRU
worsens, as exhibited by the unusually high MSE. However,
the addition of dense connection is a viable solution, as Dense-
GCN-GRU reduces MSE and MAE.

The variation in model performance across datasets sug-
gests that specific model architectures may be more adept at
capturing the dynamics of crowd flow in different scenarios.
Dense-GCN-GRU’s overall efficacy indicates its robustness in
handling varied spatial and temporal patterns and dataset sizes
for the task of short term crowd flow forecasting.

2) Long Term Forecasts: Similarly, analyses are conducted
on the three models and three scenarios with a longer fore-
casting horizon of 240 time steps. We present the test MSE
and MAE of the models in Figure 6 and Table IV.

At the extended forecasting horizon of 240, we observe dis-
tinct variations in model performance across different datasets.
Similar to the trends noted in shorter-term forecasting, Dense-
GCN-GRU consistently exhibits lower MSE and MAE values
across all scenarios. This pattern underscores the model’s
robustness, effectively handling variations in sample sizes, as
well as diverse spatial and temporal patterns. Furthermore,
GCN-GRU shows improved performance compared to GRU in
long-term forecasting tasks, suggesting that the incorporation

of dense connections and spatial information through graphs
could be advantageous for the task of short and long term
crowd flow forecasting.

F. Comparison of Forecasting Performance by Forecasting
Horizons

Motivated by the model performance variations in short
and long term crowd flow forecasting, we further present a
sensitivity analysis of different forecasting horizons of 20, 60,
120, and 240 time steps, averaging the MSE and MAE across
the three scenarios.

Figure 7 provides a comprehensive view of how each
model copes with short-term versus long-term predictions.
Dense-GCN-GRU consistently shows lower MSE and MAE
across all forecasting horizons, indicating its robustness and
reliability in both short-term and long-term forecasting. The
model’s prediction accuracy slightly decreases as the horizon
lengthens, but its performance remains the highest accuracy.

GCN-GRU, while generally exhibiting higher error rates
than Dense-GCN-GRU, demonstrates an improvement in ac-
curacy as the forecasting horizon increases, suggesting its
potential suitability for longer-term predictions. However, its
performance is still much worse than the Dense-GCN-GRU,
which fuses spatial information via dense connection.

GRU shows a decline in performance with increasing fore-
casting horizon lengths. Its higher MSE and MAE values,
especially at longer horizons, highlight potential limitations
in capturing complex spatio-temporal dependencies over ex-
tended periods.

Overall, the integration of spatial information through
graph-based approaches, as seen in Dense-GCN-GRU and
GCN-GRU, appears to enhance forecasting accuracy, espe-
cially with longer forecasting horizons. Dense-GCN-GRU’s
consistent performance across various horizons and datasets
underscores the effectiveness of combining dense connections
with spatial dependencies in graph structures for robust spatio-
temporal forecasting.

V. CONCLUSION

In this study, we introduced the STEN framework and
the accompanying Campus Crowd dataset, both released as
publicly available resources designed to facilitate research on
crowd flow forecasting and related spatio-temporal represen-
tation learning tasks. Our method addresses the limitations of
existing crowd studies by incorporating both crowd flow data
and spatial connectivity information from real-world university
campus environments. STEN leverages spatial and temporal
encoders to combine embedding vectors obtained from both
spatial and temporal crowd flow data. Experiments were
conducted on two scenarios: a large-scale event at a football
stadium and a class dismissal at the Science and Engineering
Quad (SEQ). By offering these resources, we aimed to enable
researchers to develop and evaluate novel machine learning
models for understanding and predicting crowd dynamics in
complex built environments.



Fig. 5. MSE and MAE of crowd flow forecasting models at a forecasting horizon of 20 across different datasets. Lower MSE and MAE values indicate more
accurate forecasts.

Fig. 6. MSE and MAE of crowd flow forecasting models at a forecasting horizon of 240 across different datasets. Lower MSE and MAE values indicate
more accurate forecasts.



Fig. 7. MSE and MAE of crowd flow forecasting models at forecasting horizons at 20, 60, 120, and 240 time steps. Lower MSE and MAE values indicate
more accurate forecasts.

Future work could focus on several aspects to further
enhance the value of STEN and the Campus Crowd dataset
and expand its applications. On the data side, while the current
dataset includes two representative scenarios, future versions
could incorporate more diverse settings, such as shopping
malls, airports, or city centers, to capture a wider range of
crowd behaviors and environmental factors. On the framework
side, expanding the current framework with packaged imple-
mentations could facilitate a more comprehensive assessment
of crowd flow forecasting models. Furthermore, building com-
munity tools such as leader board or data challenge could
encouraging the research community to contribute to the
dataset and to provide feedback that drives innovation in crowd
flow forecasting and related fields.
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